Pall Corp. and Lewis University Expand Research on Interaction between Nanoparticles and Filter Medi

Pall Corp. and Lewis University Expand Research on Interaction between Nanoparticles and Filter Media

Insights Presented at International Forum Can Help in the Development and Selection of New Chemical Mechanical Polishing Filtration Products

PORT WASHINGTON, N.Y.--(BUSINESS WIRE)-- Building on earlier teamwork with Lewis University, Pall Corporation (NYSE:PLL) today announced that scientists from both organizations have expanded research into optimizing filtration technology for chemical mechanical planarization (CMP) operations, a critical step in the manufacture of microchips. With the advent of new slurries containing ever finer nanoparticles, filtration is critical to removing oversized, defect-causing particles while allowing the unhindered passage of the active, small particles. The study was designed to elucidate differences in adsorption characteristics of silica and ceria particles, which are common abrasives in CMP slurry, to filter media. The results can provide guidance when designing filtration for specific slurry types, or when recommending specific filter grades or modes of usage in order to maximize filtration efficiency and service life.


A paper on the Pall/Lewis University research, "The Role of Abrasive Type and Media Surface Energy on Nanoparticle Absorption," was recently presented by Vivien Krygier, Ph.D., senior vice president of Pall Microelectronics marketing, at the International Conference on Planarization/CMP Technology (ICPT) in Grenoble, France. The conference is an international forum for academic researchers, industrial practitioners and engineers from around the world to share research in CMP technology.

For the second year in a row, Lewis University undergraduate student Jordan Kaiser and Jason Keleher, Ph.D., assistant professor of Chemistry, have collaborated with Patrick Levy, product manager at Pall Corp., and Patrick Connor, Ph.D., associate director at Pall Corp., on nanoparticle/filtration research. The research focused on gaining mechanistic insight centered on the synergy between nanoparticles and filtration media exhibiting modulated surface energy. Results revealed a significant difference in particle/filter media interaction occurring under conditions that simulate actual capture of abrasive particles or their agglomerates in a depth filter.

Pall Microelectronics supports customers in the semiconductor, data storage, fiber optic, display, and solar energy materials industries with innovative detection, filtration, and purification products, and deep applications expertise, for chemical, gas, water, chemical mechanical polishing (CMP) and photolithography processes.

To learn more about Pall's solutions for semiconductor manufacturers, please visit: http://www.pall.com/main/Microelectronics/Chemical-Mechanical-Polishing-Filtration-54166.page.

About Pall Corporation

Pall Corporation (NYSE:PLL) is a filtration, separation and purification leader providing solutions to meet the critical fluid management needs of customers across the broad spectrum of life sciences and industry. Pall works with customers to advance health, safety and environmentally responsible technologies. The company's engineered products enable process and product innovation and minimize emissions and waste. Pall Corporation is an S&P 500 company serving customers worldwide. Pall has been named a "top green company" by Newsweek magazine. To see how Pall is helping enable a greener, safer, more sustainable future, follow us on Twitter @PallCorporation or visit www.pall.com/green.

Lewis University is a Catholic university offering distinctive undergraduate and graduate programs to more than 6,500 traditional and adult students. Lewis offers multiple campus locations, online degree programs, and a variety of formats that provide accessibility and convenience to a growing student population. Sponsored by the De La Salle Christian Brothers, Lewis prepares intellectually engaged, ethically grounded, globally connected, and socially responsible graduates. The seventh largest private not-for-profit university in Illinois, Lewis has been nationally recognized by The Princeton Review and U.S. News & World Report. Visit www.lewisu.edufor further information.



Pall Corporation
Marie (MacLean) Baron
Director, Pall Industrial Global Marketing Communications
516-801-9282
Mobile: 516-492-1462
Marie_Baron@pall.com
or
Lewis University
Kathrynne Skonicki
Director of Media Relations
815-536-5711
Mobile: 815-210-6305
skonicka@lewisu.edu

KEYWORDS:   United States  Europe  North America  France  New Hampshire

INDUSTRY KEYWORDS:

The article Pall Corp. and Lewis University Expand Research on Interaction between Nanoparticles and Filter Media originally appeared on Fool.com.

Try any of our Foolish newsletter services free for 30 days. We Fools may not all hold the same opinions, but we all believe that considering a diverse range of insights makes us better investors. The Motley Fool has a disclosure policy.

Copyright © 1995 - 2013 The Motley Fool, LLC. All rights reserved. The Motley Fool has a disclosure policy.


Increase your money and finance knowledge from home

Basics of Diversification

Learn one of the fundamental concepts of building a portfolio.

View Course »

Socially Responsible Investing

Invest in companies with a conscience.

View Course »

Add a Comment

*0 / 3000 Character Maximum